
An Investigation Into Pegasus’s Attack of iOS Vulnerability CVE
2021–30860
Meenakshi Iyer

December 15, 2023

Table of Contents

List of Visuals ... iii

History of Pegasus.. 1

ForcedEntry, an iMessage Exploit ... 3

JBIG2 Vulnerability ... 4

Weird Machines .. 8

Apple’s Fix ... 9

Chrysaor ... 10

Conclusion ... 10

Works Cited ... 11

ii

List of Visuals

Image 1: Pegasus by the Numbers.. 3

Figure 2: Glyph Susbtitution... 4

Image 3: ReadTextRegionSeg .. 5

Figure 4: Buffer Overflow ... 6

Figure 5: JBIG2 Bitmap ... 7

Figure 6: iOS Patch ... 9

iii

History of Pegasus

Like most others in the early 2000s, Omri Lavie and Shavel Hulio were interested in
entering the startup industry. The pair developed a tool that let IT representatives access entire
control of the company’s customers’ devices remotely- requiring that the user grant them
permission first. CommuniTake, their product and company, was launched in 2009. As their
product gained traction, European intelligence companies developed interest in the product, and
soon the idea to develop a tool that didn’t rely on user authorization was born. In early 2010,
NSO (Niv, Shavel, and Omri) Group was founded by Lavie, Hulio, and Niv Karmi (a former
Mossad Intelligence Operative), and started employing dozens of military intelligence workers to
help develop Pegasus. NSO Group took off, and compared to international competitors stuck in a
time of run-of-the-mill email attachment malware, had more modern technologies to offer: SMS
Infections. With Mexico being one of the first major customers, the money came pouring in, and
the list of journalists, politicians, and drug traffickers targeted for surveillance increased.

NSO Group, as opposed to other malware companies, decided to stick exclusively to
smartphones. As of 2020, more than two-thirds of their employees worked in research;
specifically, they were scouring softwares for zero-day vulnerabilities, in which newly deployed
code had vulnerabilities of which the public was not yet aware.

By taking advantage of these vulnerabilities, the group was able to extend the length of
time for which their attacks are not defended. Moreover, Pegasus employed zero-click attacks, in
which the user does not have to interact with the device to allow the software to corrupt it,
making Pegasus go from discrete to practically invisible. The power in the attacker's hand posed
a serious threat—to educate individuals on internet safety, and to beware scams is one level, and
telling individuals there is nothing they can do about being attacked is another. Shavel Hulio
himself is said to only use Samsung phones running Android, and he often updates them.

According to their website, NSO Group “creates technology that helps government
agencies prevent and investigate terrorism and crime to save thousands of lives around the globe.
” (NSO Group) However, the operations into which they market their software are highly
secretive. They claim to work with governments to prevent terrorist attacks, break up pedophilia,
sex, and drug trafficking rings, locate kidnapped children, etc. As of 2022, little was known
about their client screening process, but according to an official statement on their website, “our
vetting process goes beyond legal and regulatory requirements to ensure the lawful use of our
technology as designed.”

1

The image below quantifies that statement further. Notably, possibly six countries using
the spyware had a
history of abusing
spyware to target
civil society.

For example, the
West African country
of Togo
(interestingly, a
strong poltical ally
with Israel) has long
used torture and
excessive force
against peaceful
opposition. In order
to spy on peaceful
opposition, the
operator of Pegasus

would deploy decoy websites with keywords such as
“‘nouveau president’ (new president) and ‘politiques info’ (political information)” (Marczak,
Scott-Railton, McKune, Razzak, Deibert 10), to attract potential targets to the website and infect
their devices with the spyware. There are several of these operators working in Israel, and other
countries, including the Netherlands, Palestine, and Qatar.

What makes Pegasus stand out amongst other spyware is its elusiveness. Despite
numerous attempts at educating people about the dangers of clicking scam links, or general
internet safety, there is little that could be done to defend against Pegasus. Most importantly,
individuals are unable to realize that malware was on their device due to its zero-click
exploitation, meaning the user would not mistakenly click on a link, or navigate to a “shady”
website.

Generally, spyware programs often exhibit telltale signs of their presence, such as
increased CPU cycles and abnormal memory consumption. The collected data is then transmitted
to the operator’s servers through HTTP connections. As a result, operators would need to
maintain domain names, which allow the malware to be tracked. One technique is fingerprinting,
in which cryptographic hash values are generated and hidden within an executable to provide
authentication. Another technique, DNS cache probing, is where the Domain Name System
activity on a domain is monitored, and suspicious activity is investigated. These techniques offer

2

some insight into Pegasus’s inner workings, but only to a limited extent. (Marczak,
Scott-Railton, McKune, Razzak, Deibert 8)

Dubbed as military grade spyware, Pegasus is also capable of hacking through
encryptions on most cell phones, converting them into an audio and visual tracking device,
completely unbeknownst to the user. It took advantage of iOS and Android vulnerabilities,
occurring in a multitude of places, such as Apple Music, iMessage, Photos App, and Homekit.
Once the exploit is executed, Pegasus can use fake authentication in order to get kernel level
access, and track location, all user communications (texts, phone calls, etc.), and much more, all
this again without the knowledge or consent of the user.

In comparison to other zero-click spywares, Pegasus has not been deployed by
cybercriminals for financial gain, but is instead associated with countries and governments,
which raises questions about human rights, abuses of power, and suppression of dissent. Ethics
behind this have long been discussed to no avail. One one hand, spyware used for security
purposes can be powerful, and can contribute to all the goals that NSO Group prioritizes. On the
other hand, when malware ends up in the wrong hands, it can be used in dangerous ways that
harm civilians, and work against the goals of the organization. Since digital espionage is an
important part of national security, lines defining how much privacy an individual is entitled to,
especially when they are suspected of causing danger or terror, are constantly changing.

ForcedEntry, An iMessage Exploit

ForcedEntry, a new vulnerability identified in 2021, offers valuable insight into the inner
workings of one of Pegasus’s exploits. These zero-click attaches are sophisticated in how they
infect a user’s device, making devices running iOS easy targets. This exploit was an iMessage
exploit and based on memory corruption. Such exploits are typically required to have the
following: a memory corruption vulnerability, a way to break Address Space Layout
Randomization (ASLR), a way to turn the vulnerability into remote code execution, and finally, a
way to break out of a sandbox. The exploit was marked as Common Vulnerability Exposure
(CVE) 2021–30860, in which PDF files disguised as GIF files injected JBIG2-encoded data to
provoke an integer overflow.

The way Apple renders GIFs in iMessage is by repeatedly looping them, rather than
having them only play once. In between when the message is received and when it is rendered on
the user’s screen, any file with the extension “.gif” is sent to a function that repeatedly uses the
CoreGraphics API to render the source image into a new GIF file at the destination path. This
means that any file with extension “.gif” (even if it is not actually a GIF file) is rendered into a

3

new GIF file. In this process, the ImageIO library is used to parse the source file using its image
format, and not the file extension. For example, a file ending in “.gif” would be sent to be
repeatedly rendered, and each time, call a codec associated with its actual file type. Therefore, a
file that may not be a .gif, but has a .gif extension, could gain access to many image codecs, and
increase the surface area of exploitation. Using this trick, NSO was able to target a vulnerability
in the CoreGraphics PDF parser.

JBIG2 Vulnerability

In the CoreGraphics PDF parser, the JBIG2 standard (a domain specific image codec to
tremendously increase compression rates) has a “partially lossy” method of compressing. The
JBIG2 standard is an encoding/decoding method for black and white printed matter. The partially
lossy method involves storing the bit difference between a substituted hieroglyphic and original

hieroglyphic. The glyph character in this case is a
letter. The image below depicts the difference.

This difference can be computed using the logical
operator XOR. Rather than do the iteration in one go,
it is done step by step using many logical operators
to map these bits. Each step brings the rendered
output closer to the original, which allows control
over the level of “lossiness”.

The format of the JBIG2 class is a series of segments, which can be considered as a
series of commands. The JBIG2Bitmap, a subclass of JBIG2, represents a rectangular array of
pixels. A JBIG2SymbolDict class groups JBIG2Bitmaps together.

In the function readTextRegionSeg below, an unsigned integer numSyms is calculated
according to the size of the JBIG2SymbolDict.

4

numSyms is an unsigned integer (1) that is repeatedly incremented (2).

5

When two unsigned integers that are really large are added, it is possible that the result be
smaller than the actual sum. For example, consider a number in binary that can only be
represented in 4 bits. If we take the number 0100 and 1101, which are 4 and 13 respectively, we
know the sum must be 10001, or 17 in decimal. The system can only represent numbers with 4
bits however, so it will save the last 4 bits, which make the number 0001, or 1. Thus, 4+13=1
because of integer overflow.

With careful calculations, it is possible to make numSyms overflow to a smaller value.

Then, that undersized value is used to allocate the size of the heap buffer, which syms
points to (3). The heap buffer is a buffer that exists in the heap portion of memory, where all
global variables and global data exist. With the loop (3), the JBIG2Bitmap pointer values are
written into the undersized syms.

However, once the limit of the buffer is reached, the values would keep being written, to
values out of the bounds of the buffer, leading to an out of bounds error. Commonly, out of
bounds errors result in a crash that would stop the process immediately. However, there exists a
nifty trick where the heap buffer is groomed so that the first few write offs of the end of this
buffer corrupt the GLIST backing buffer, which stores all known JBIG2 segments. With this
overflow, the GList backing buffer is overwritten with JBIG2Bitmaps instead of
JBIG2Segments. The image below depicts this process.

6

Then, the attacker grooms the JBIG2Bitmap object that represents the current page.
These bitmaps are wrappers around a backing buffer that store its width and height (in bits) and
data for how many bytes are stored per line. With this information, they can carefully stop the
overflow after writing exactly 3 more pointers after the end. This overwrites the virtual table
pointer and the first 4 fields of JBIG2Bitmap, as shown in the following image.

Due to the nature of the way Apple organizes the address space, these pointers are likely
to be in the second 4 gigabytes of the virtual memory. Since iOS hardware is little endian
(meaning the overwriting happens with the most significant half of the JBIG2Bitmap pointer
first), the segNum and h field are likely to be overridden with the least-significant half of such a
pointer, which would be a random value between 0x100000 and 0xffffffff. This gives the current
destination page JBIG2Bitmap a large h value, which is used for bounds checking. Since it is
supported to reflect the actual size of the page backing buffer, this ultimately has the effect of
unbounding the buffer. Then, all subsequent JBIG2 segment commands can read and write to
memory outside of the original bounds of the page backing buffer. The heap groom also puts the
current page’s backing buffer right below the syms buffer, so that when the page JBIG2Bitmap
is unbounded, it can read and write its own fields.

By repeating this process with the correct canvas coordinate, the attacker can write to all
the fields of the page, and by choosing the right values of w, h, and line, they can also write to

7

arbitrary offsets from the buffer. Given that the attacker can access memory regions on arbitrary
offsets from the current page’s JBIG2Bitmap buffer, and since it has been unbounded, the
attacker can also perform logical operations on memory at any out of bounds offset. The steps to
perform this JBIG2 refinement are also very flexible, and each step can either output the bitmap
and any previously created segments, or render output to the current page. If the attacker crafts
the context dependent part of the refinement, it’s possible to have sequences of segments where
only the refinement combination operators have any effect. Thus, it is possible to perform logical
operators on glyphs. Since this has been unbounded as well, it’s possible to perform logical
operations on any memory at an arbitrary offset from the buffer. Moreover, with just the logical
operators AND, OR, XOR, and XNOR, you can develop any computable function. If these
glyphs were changed to bits, then you can input a sequence of JBIG2 segment commands that
implement logical bit operations to arbitrary memory.

When JBIG2’s vulnerability is exploited using the knowledge of using logic gates to
operate on accessible memory, the next step is having the attacker build their own computer
architecture and script that. In this exploit, there are over seventy thousand segment commands
defining logical bit operations, to the extent of features such as registers, a full 64-bit adder, and
a comparator. These features can search memory and perform arithmetic operations. This is not
as fast as Javascript, but computationally equivalent to Javascript.

Weird Machines

A weird machine is a computational artifact in which additional code can be executed
outside the original specification of the program. From a theoretical perspective, a machine can
move a program from state to state, following a set of valid transitions. Illegal transitions that
result in illegal states are restricted in a way defined by the software’s security constraints.
However, in weird machines, the system can be moved into a state that is “broken” (in this case,
through memory corruption), and subsequently, the software will keep transforming the broken
state into new broken states, as opposed to terminating. A broken state is defined as one that
technically does not follow the constraints of the security guidelines, but still manages to enter
the system and continue.

In our case, the weird machine described above was responsible for loading the next
stage in the infection process, the sandbox escape. As of iOS 14, however, Apple developed
BlastDoor, a significant refactoring of iMessage processing that helped improve security against
these iMessage attacks. BlastDoor, a tightly sandboxed service, was responsible for parsing any
untrusted data in iMessages through repetitive sanitization. Moreover, it was written in Swift, a
significantly safer language with less ability to be exploited via memory corruption. Two of the

8

important changes made were re-randomizing the shared cache region, and using exponential
throttling to slow down brute force attacks.

Address Space Layout Randomization (ASLR) has one structural weakness, that the
shared cache region is randomized once per boot. Therefore, all the system libraries existed in a
single pre-linked blob, and it is at the same address across all processes. This allows an attacker
to remotely infer the base address of this cache by observing process crashes, and break ASLR.
However, with the re-randomization of the shard cache region, the address is randomized for the
target service every time it is started, which makes inferring the base address impossible, unless
through brute force.

To limit the brute force technique, the interval between restarts after a crash grows
exponentially each time. Thus, when an exploit originally took a few minutes, it can now take
many hours.

Apple’s Fix

In iOS 14.8, Apple
patched the function by
adding some bounds to
avoid overflowing the
syms buffer. This fix,
although small, helped
avoid the root cause of the
crash and any subsequent

vulnerabilities.

9

Chrysaor

Deriving from Pegasus, Chrysaor (Pegasus’s brother in Greek Mythology) was also
believed to be created by NSO Group, mainly to target Android devices. As opposed to
zero-click attacks, Chrysaor was believed to be downloaded by the target, which means the
attacker would have coaxed the target into perhaps clicking on a link, visiting a webpage, etc.
Upon installation, the software uses framaroot exploits to escalate privileges and break into the
application sandbox. Immediately after, in an effort to protect itself, the software does the
following: It installs itself on /system to persist after any factory resets. It also disables
auto-updates to maintain persistence. To collect data, it starts content observers to exfiltrate data.
It has similar capabilities to Pegasus, including but not limited to: audio/video recording,
recording data from SMS/Email applications, keystroke logging, etc. There exists an antidote file
/sdcard/MemosForNotes that removes Chrysaor from the device. More research is yet to be done
on Chrysaor, but for now, it poses a similar threat to Android users as Pegasus does to iOS users.

Conclusion:

From the advanced level of attack, we can see the technologies associated with Pegasus
are extremely threatening to targeted iOS users. Pegasus jailbreaks the device by sending a PDF
file labeled as a .gif file via iMessage. Then, as this file is parsed, a buffer that contains segments
of bitmaps is overflowed using integer overflow. By carefully grooming the objects around this,
the buffer is unbounded which allows access into all the heap memory. Finally, a weird machine
built on logical operators is run in order to escape the sandbox and install the malware onto the
system. These attacks are extremely powerful due to their discrete nature and their persistence.
Since these attacks are often targeted towards persons of political interest, average iOS users
need not worry—but it’s still a good idea for civilians to be aware of the cyberthreats to which
they may be susceptible.

It is important to continuously develop a plan to defend against such threats in order to
protect users. Obviously, individuals are not aware of Pegasus attacks due to their discrete
nature. Best measures in order to improve security of these devices would be maintaining regular
security assessments, rigorous testing, and regular updating. Nevertheless, it is important for
users to be aware of these attacks, and keep an eye out for strange behavior.

10

Works Cited

15, B. M. J. S., Authors, Analyst, M. J. T., Jin, M., Analyst, T., Us, C., & Subscribe. (2021,
September 15). Analyzing pegasus spyware’s zero-click iPhone Exploit Forcedentry. Trend
Micro.
https://www.trendmicro.com/en_vn/research/21/i/analyzing-pegasus-spywares-zero-click-i
phone-exploit-forcedentry.html

Christian J. D’Orazio, Martini, B., Quick, D., Barmpatsalou, K., D’Orazio, C., Fan, Y.,
Daryabar, F., Shariati, M., Rahman, N. H. A., & Azfar, A. (2016, November 17).
Circumventing IOS security mechanisms for APT forensic investigations: A security
taxonomy for cloud apps. Future Generation Computer Systems.
https://www.sciencedirect.com/science/article/pii/S0167739X16305647

A deep dive into an NSO zero-click iMessage Exploit: Remote Code Execution. A deep
dive into an NSO zero-click iMessage exploit: Remote Code Execution. (n.d.).
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

Espósito, F. (2021, January 29). Apple adopts new “Blastdoor” security system on IOS 14
to reinforce Imessage Integrity. 9to5Mac.
https://9to5mac.com/2021/01/28/apple-adopts-new-blastdoor-security-system-on-ios-14-to
-reinforce-imessage-integrity/

An investigation of Chrysaor malware on Android. Android Developers Blog. (n.d.).
https://android-developers.googleblog.com/2017/04/an-investigation-of-chrysaor-malware-
on.html

NSO Group - Cyber Intelligence for Global Security and stability. (n.d.-a).
https://www.nsogroup.com/

Pegasus spyware: A vulnerable behaviour-based attack system | IEEE ... (n.d.-b).
https://ieeexplore.ieee.org/document/10212163

Privatized espionage: NSO Group Technologies and ... - Wiley Online Library. (n.d.-c).
https://onlinelibrary.wiley.com/doi/full/10.1002/tie.22321

The rise and fall of NSO Group. Forbidden Stories. (n.d.).
https://forbiddenstories.org/the-rise-and-fall-of-nso-group/

Ryan. (n.d.). A deep dive into an NSO zero-click iMessage Exploit: Remote Code
Execution. A deep dive into an NSO zero-click iMessage exploit: Remote Code Execution.
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

11

Shivi Garg, SalernoS., ZdziarskiJ., KumarR., QamarA., GargS., O’DeaS., TungLiam,
ClementJ., HidhayaS.F., ZhangL., AhvanooeyM.T., TalalM., ShresthaB., LeeS., RashidiB.,
… WangJ. (2021, February 13). Comparative analysis of Android and IOS from Security
Viewpoint. Computer Science Review.
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000125

Technical analysis of pegasus spyware - lookout. (n.d.-d).
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-analysis.pdf

View of cyber security regimes and the violation of international law in the context of
pegasus controversy: Pakistan Journal of International Affairs. View of CYBER
SECURITY REGIMES AND THE VIOLATION OF INTERNATIONAL LAW IN THE
CONTEXT OF PEGASUS CONTROVERSY | Pakistan Journal of International Affairs.
(n.d.). https://www.pjia.com.pk/index.php/pjia/article/view/422/300

12

